FacebookTwitterLinkedInRSS Feed

Seeing the Formation of Planets

Kaynak: YouTube; SpaceRip
Jan 7, 2011

Watch in 1080p. See how the Webb Space Telescope will study planetary bodies with our solar system and planets orbiting other stars. Its operations in the years to come promise to help scientists better understand how planets form and how they evolve.

Planets begin as dense knots in clouds of dust swirling around a young star. But how do they go from something like this, to something like this?

With the James Webb Space Telescope astronomers will be able to study how planets come to be and how they change as they get older.

After centuries of searching, astronomers are finding exoplanets just about everywhere. Ranging from giant planets with masses much greater than Jupiter's to worlds only a few times more massive than Earth.

But where do the planets we know best fit into the menagerie of worlds astronomers are finding? How did our solar system come to be the way it is? Why is Earth a balmy water rich world and are there other worlds like it elsewhere in the galaxy?

These are the kind of questions astronomers will address with Webb. For planets that pass directly in front of their stars, Webb will search for chemical fingerprints, identifying atmospheric gases like water vapor, carbon dioxide, and methane that absorb specific wavelengths of the star's light. Webb will also study the dusty disks where new planets form to reveal how the chemical compositions of younger and older disks change with time, and identifying how these changes are reflected in the planets we find.

Such studies will be revolutionary in their own right. And by applying Webb's capabilities closer to home, astronomers will better understand planetary systems.

For example, how do our asteroids, comets, and other small bodies like Pluto relate to the objects that create dusty disks around other stars? The Webb telescope will determine the physical and chemical properties of these bodies with unprecedented sensitivity in wavelengths unavailable to telescopes on the ground.

By learning more about the small bodies in our solar system, scientists will be able to address questions about the solar system's past, and compare it to other planetary systems we find in similar phases of construction.

For example, did Earth's oceans arrive by impacts with small icy bodies? If so, is the same process happening elsewhere and can we find those locations? Webb also will study the outer planets and their moons. Of particular interest is Titan, the largest moon of Saturn, now being explored by NASA's Cassini spacecraft. Titan is as big as the planet mercury, possesses an atmosphere half again as thick as Earth's, and a frigid surface with lakes of liquid hydrocarbons.

Webb will map Titan's chemical makeup with six times Cassini's resolution and monitor the moon's seasonal changes over a decade or more.

Next stop Uranus. When Voyager 2 returned this image in 1986, the planet's south pole was facing the sun and few clouds could be seen. But as Uranus neared its equinox in 2007, bright clouds suddenly materialized. So far scientists are at a loss to explain this profound seasonal change.

During Voyager's visit, the northern hemispheres of Uranus's big moons were all in shadow. But when Webb begins service, the moons' northern halves will face the sun and give astronomers abundant new real estate to explore.

Three years later, in 1989, Voyager 2 passed Neptune and imaged its strange dark spot. Over the following years, astronomers have seen the dark spot disappear, and then reappear. Voyager easily picked out clouds despite Neptune's greater distance from the sun. Why is weather on Neptune and Uranus so different?

Neptune's big moon Triton is unusual too. Nitrogen-spewing volcanoes and other geological forces reshaped this frozen surface in ways we're just beginning to understand.

Comets, asteroids, the outer planets and their moons, and beyond them, the icy bodies of the Kuiper belt: these objects provide us with the closest and most detailed look at how our own solar system evolved.

The James Webb Space Telescope makes it possible to take that understanding a step further, to probe the makeup of nearby planetary systems at comparable distances from their stars. Webb will allow astronomers to directly compare the chemical and physical properties of our outer solar system with similar zones around nearby stars.

back to top

Astronomİ ve Uzay Bİlİmlerİ Ders Kitabı

Voyager, Galaksİ notları

Hubble, Galaksİ Notları

Yeni teleskobum ve Ay

AY-Orion80DGökyüzü fotoğrafçılarının önerisi üzerine uzun odak uzaklığına sahip bir Canon merceği alacağıma çok daha ucuza 600 mm odak uzaklığına sahip 80 mm çaplı mercekli bir teleskop aldım. Marka modeli Orion 80D. Üç ayağın üzerinde zor durduğu için daha önce aldığım Orion 2M kundağının üzerine yerleştirdim ve o gün dolunaydı ben de denemek için Ay'ı çektim. 26 Şubat tarihinde Saklıkent'de çekilmiştir. ISO 100 ve poz süresi 1/320. Görüntü kırpılmıştır. (19 Mart 2013)


Adana 35:18 37:01
Adıyaman 38:17 37:46
Afyon 30:33 38:45
Ağrı 43:03 39:44
Aksaray 34:03 38:23
Akyarlar 27:17 37:00
Amasya 35:51 40:39
Ankara 32:52 39:56
Antakya 36:07 36:14
Antalya 30:42 36:53
Artvin 41:49 41:11
Aydın 27:51 37:51
Ardahan 42:41 41:07
Balıkesir 27:53 39:39
Batman 41:07 37:52
Bayburt 40:15 40:16
Bilecik 29:59 40:09
Bursa 29:04 40:11
Bingöl 40:29 38:53
Bitlis 42:06 38:22
Bolu 31:37 40:44
Burdur 30:17 37:43
Bartın 32:21 41:38
Çanakkale 26:24 40:09
Çankırı 33:37 40:36
Çorum 38:27 39:14
Denizli 29:06 37:46
Diyarbakır 40:14 37:55
Edirne 26:34 41:40
Elazığ 39:14 38:41
Erzincan 39:29 39:44
Erzurum 41:17 39:55
Eskişehir 30:32 39:46
Gaziantep 37:22 37:05
Giresun 38:24 40:55
Gümüşhane 39:29 40:27
Hakkari 43:45 37:34


36:12 36:52
Iğdır 44:02 39:55
Isparta 30:33 37:46
34:38 36:48
İstanbul 28:58 41:01
İzmir 27:09 38:25
Karaman 33:14 37:11
Kars 43:05 40:36
Kastamonu 33:47 41:22
Kayseri 35:30 38:43
Kırıkkale 33:31 39:50
Kırklareli 27:12 41:44
Kırşehir 34:10 39:09
29:55 40:46
Konya 32:31 37:52
Kütahya 29:59 39:25
Karabük 32:37 41:12
Kilis 37:05 36:44
Malatya 38:19 38:21
Manisa 27:26 38:36
Maraş 36:55 37:36
Mardin 40:44 37:18
Muğla 38:22 37:12
Muş 41:30 38:44
Nevşehir 34:43 38:38
Niğde 34:42 37:59
Ordu 37:53 41:00
Osmaniye 36:14 37:05
Rize 40:31 41:02
30:24 40:46
Samsun 36:20 41:17
Siirt 41:57 37:56
Sinop 35:09 42:01
Sivas 37:02 39:45
Tekirdağ 27:31 40:59
Tokat 36:43 40:19
Trabzon 39:43 41:00
Tunceli 39:32 39:07
Urfa 38:46 37:08
Uşak 29:25 38:41
Van 43:20 38:28
Yozgat 34:48 39:50
Yalova 29:15 40:39
Zonguldak 31:49 41:27